skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "HONG, Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Abstract High latitude upper atmospheric inter‐hemispheric asymmetry (IHA) tends to be enhanced during geomagnetic storms, which may be due to the complex spatiotemporal changes and magnitude modifications in field aligned currents (FACs) and particle precipitation (PP). However, the relative contribution of FACs and PP to IHA in high‐latitude forcing and energy is not well understood. The IHA during the 2015 St. Patrick’s Day storm has been investigated using the global ionosphere thermosphere model (GITM), driven by FACs from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) and PP from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). A comprehensive study of the (a) relative contributions of FACs and PP to electric potential and Joule heating and (b) sensitivity of electric potential and Joule heating to the changes in magnitude and distribution of FACs and PP is presented. The results indicate that FACs lead to larger potential and Joule heating changes compared with PP. The spatial variations of potential and Joule heating are also affected by variation in FACs. As for asymmetric magnitude and distribution, it is found that electric potential and Joule heating are more sensitive to changes in the distribution of FACs and PP than the magnitude of FACs and PP. A new spatial asymmetry index (SAI) is introduced, which reveals spatial asymmetric details that are often overlooked by previous studies. This sensitivity study reveals the relative contributions in high‐latitude forcing and emphasizes the importance of obtaining accurate FACs and PP in both hemispheres. 
    more » « less
  3. Inter-hemispheric asymmetry (IHA) in Earth’s ionosphere–thermosphere (IT) system can be associated with high-latitude forcing that intensifies during storm time, e.g., ion convection, auroral electron precipitation, and energy deposition, but a comprehensive understanding of the pathways that generate IHA in the IT is lacking. Numerical simulations can help address this issue, but accurate specification of high-latitude forcing is needed. In this study, we utilize the Active Magnetosphere and Planetary Electrodynamics Response Experiment-revised fieldaligned currents (FACs) to specify the high-latitude electric potential in the Global Ionosphere and Thermosphere Model (GITM) during the October 8–9, 2012, storm. Our result illustrates the advantages of the FAC-driven technique in capturing high-latitude ion drift, ion convection equatorial boundary, and the storm-time neutral density response observed by satellite. First, it is found that the cross-polar-cap potential, hemispheric power, and ion convection distribution can be highly asymmetric between two hemispheres with a clear Bydependence in the convection equatorial boundary. Comparison with simulation based on mirror precipitation suggests that the convection distribution is more sensitive to FAC, while its intensity also depends on the ionospheric conductance-related precipitation. Second, the IHA in the neutral density response closely follows the IHA in the total Joule heating dissipation with a time delay. Stronger Joule heating deposited associated with greater high-latitude electric potential in the southern hemisphere during the focus period generates more neutral density as well, which provides some evidences that the high-latitude forcing could become the dominant factor to IHAs in the thermosphere when near the equinox. Our study improves the understanding of storm-time IHA in high-latitude forcing and the IT system. 
    more » « less
  4. null (Ed.)
    Abstract The Subantarctic Mode Water (SAMW) plays an essential role in the global heat, freshwater, carbon, and nutrient budgets. In this study, decadal changes in the SAMW properties in the Southern Indian Ocean (SIO) and associated thermodynamic and dynamic processes are investigated during the Argo era. Both temperature and salinity of the SAMW in the SIO show increasing trends during 2004-2018. A two-layer structure of the SAMW trend, with more warm and salty light SAMW but less cool and fresh dense SAMW, is identified. The heaving and spiciness processes are important but have opposite contributions to the temperature and salinity trends of the SAMW. A significant deepening of isopycnals (heaving), peaking at σ θ =26.7-26.8 kg m −3 in the middle layer of the SAMW, expands the warm and salty light SAMW and compresses the cool and fresh dense SAMW corresponding to the change in subduction rate during 2004-2018. The change in the SAMW subduction rate is dominated by the change in the mixed layer depth, controlled by the changes in wind stress curl and surface buoyancy loss. An increase in the mixed-layer temperature due to weakening northward Ekman transport of cool water leads to a lighter surface density in the SAMW formation region. Consequently, density outcropping lines in the SAMW formation region shift southward and favor the intrusion and entrainment of the cooler and fresher Antarctic surface water from the south, contributing to the cooling/freshening trend of isopycnals (spiciness). Subsequently, the cooler and fresher SAMW spiciness anomalies spread in the SIO via the subtropical gyre. 
    more » « less
  5. null (Ed.)
  6. Designing efficient electrocatalysts has been one of the primary goals for water electrolysis, which is one of the most promising routes towards sustainable energy generation from renewable sources. In this article, we have tried to expand the family of transition metal chalcogenide based highly efficient OER electrocatalysts by investigating nickel telluride, Ni 3 Te 2 as a catalyst for the first time. Interestingly Ni 3 Te 2 electrodeposited on a GC electrode showed very low onset potential and overpotential at 10 mA cm −2 (180 mV), which is the lowest in the series of chalcogenides with similar stoichiometry, Ni 3 E 2 (E = S, Se, Te) as well as Ni-oxides. This observation falls in line with the hypothesis that increasing the covalency around the transition metal center enhances catalytic activity. Such a hypothesis has been previously validated in oxide-based electrocatalysts by creating anion vacancies. However, this is the first instance where this hypothesis has been convincingly validated in the chalcogenide series. The operational stability of the Ni 3 Te 2 electrocatalyst surface during the OER for an extended period of time in alkaline medium was confirmed through surface-sensitive analytical techniques such as XPS, as well as electrochemical methods which showed that the telluride surface did not undergo any corrosion, degradation, or compositional change. More importantly we have compared the catalyst activation step (Ni 2+ → Ni 3+ oxidation) in the chalcogenide series, through electrochemical cyclic voltammetry studies, and have shown that catalyst activation occurs at lower applied potential as the electronegativity of the anion decreases. From DFT calculations we have also shown that the hydroxyl attachment energy is more favorable on the Ni 3 Te 2 surface compared to the Ni-oxide, confirming the enhanced catalytic activity of the telluride. Ni 3 Te 2 also exhibited efficient HER catalytic activity in alkaline medium making it a very effective bifunctional catalyst for full water splitting with a cell voltage of 1.66 V at 10 mA cm −2 . It should be noted here that this is the first report of OER and HER activity in the family of Ni-tellurides. 
    more » « less